C.U.SHAH UNIVERSITY Summer Examination-2022

Subject Name: Theories of Ring and Field

Subject Code: 5SC0	3TRF1	Branch: M.Sc. (Mathematics)	
Semester: 3	Date: 26/04/2022	Time: 02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1			Attempt the Following questions	(07)
Q-1		a.	Define: Ring	(01)
		b.	Define: Ideal	(01)
		c.	Define: Characteristic of a ring.	(01)
		d.	Write characteristic of Z_p where p is prime.	(01)
		e.	Define: Prime Ideal.	(01)
		f.	Every maximal ideal is prime ideal. True/False.	(01)
		g.	Define: Euclidean ring.	(01)
Q-2			Attempt all questions	(14)
Q-2	a.		Prove that every field is an Euclidean ring.	(05)
	b.		Prove that $R I$ is an integral domain if and only if I is prime.	(05)
	c.		Prove that every finite integral domain is field.	(04)
			OR	
Q-2			Attempt all questions	(14)
	a.		Prove that every Euclidean ring is principal ideal ring.	(06)
	b.		Prove that for any two non-zero elements a and b in Euclidean ring R have L.C.M. in R .	(04)

	c.	Prove that Z_p is field, where p is prime.	(04)
Q-3	a.	Attempt all questions If <i>a</i> is an element in a commutative ring <i>R</i> with unity then prove that the set $S = \{ra \mid r \in R\}$ is a principal ideal of <i>R</i> generated by <i>a</i> .	(14) (05)
	b.	State and prove unique factorization theorem.	(05)
	c.	State and prove Gauss lemma.	(04)
Q-3	a.	Attempt all questions Let <i>R</i> be a Euclidean ring. Let $a, b \in R$ not both of which are zero. Then prove that <i>a</i> and <i>b</i> have a greatest common divisor <i>d</i> which can be	(14) (06)
	b.	express in the form of $d = \lambda a + \mu b$ where $\lambda, \mu \in R$. Let <i>R</i> be Euclidean ring. Let <i>a</i> and <i>b</i> be two non-zero elements in <i>R</i> . If <i>b</i>	(04)
	c.	is not unit in R then prove that $d(b) < d(ab)$. Find all units of Gaussian integer.	(04)
		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a.	Every principal ideal ring is Euclidean ring. True/False	(01)
	b.	Define: Degree of an algebraic element.	(01)
	c.	Define: Splitting field.	(01)
	d.	Define: Normal extension.	(01)
	e.	Define: Associates.	(01)
	f.	Define: Root of polynomial.	(01)
	g.	Is $f(x) = x^5 + 9x^4 + 12x^2 + 6$ irreducible over <i>Q</i> ?	(01)
Q-5	a.	Attempt all questions Prove that $F[x]$ is a principal ideal ring.	(14) (06)
	b.	If π is prime element in the Euclidean ring R and $\pi \mid ab$ where $a, b \in R$	(05)
	C.	then prove that π divides at least one a or b . If $f(x) = 3x^4 + x^3 + 2x^2 + 1$ and $g(x) = x^2 + 4x + 2$ in $Z_5[x]$ then find quotient and remainder in $Z_5[x]$ when $f(x)$ is divided by $g(x)$ OR	(03)
Q-5		Attempt all questions	(14)
~	a.	State and prove division algorithm for polynomials over field.	(06)
	b.	State and prove remainder theorem.	(04)
	c.	Prove that cyclotomic polynomial is irreducible over Q .	(04)

Q-6	a.	Attempt all questions State and prove Eisenstein criterion.	(14) (05)
	b.	If $f(x)$ and $g(x)$ are primitive polynomials in $Z[x]$ then prove that $f(x)g(x)$ is primitive polynomial in $Z[x]$.	(05)
	c.	Let <i>K</i> be an extension field of <i>F</i> . Let $a \in K$ be algebraic over <i>F</i> . Then prove that any two minimal monic polynomials for <i>a</i> over <i>F</i> are equal. OR	(04)
Q-6		Attempt all Questions	(14)
ΥŸ	a.	Prove that every finite extension K of a field F is algebraic.	(06)
	b.	Let <i>K</i> be an extension field of a field <i>F</i> . Then prove that $a \in K$ is algebraic over <i>F</i> if and only if $F(a)$ is a finite extension of <i>F</i> .	(06)
	c.	Show that the polynomial $x^2 + x + 4$ is irreducible over a field of integers modulo 11.	(02)

